ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity.

نویسندگان

  • Tingting Zhou
  • Lianchi Liu
  • William A Goddard
  • Sergey V Zybin
  • Fenglei Huang
چکیده

Recently quantum mechanical (QM) calculations on a single Si-PETN (silicon-pentaerythritol tetranitrate) molecule were used to explain its colossal sensitivity observed experimentally in terms of a unique Liu carbon-silyl nitro-ester rearrangement (R3Si-CH2-O-R2→ R3Si-O-CH2-R2). In this paper we expanded the study of Si-PETN from a single molecule to a bulk system by extending the ReaxFF reactive force field to describe similar Si-C-H-O-N systems with parameters optimized to reproduce QM results. The reaction mechanisms and kinetics of thermal decomposition of solid Si-PETN were investigated using ReaxFF reactive molecular dynamics (ReaxFF-RMD) simulations at various temperatures to explore the origin of the high sensitivity. We find that at lower temperatures, the decomposition of Si-PETN is initiated by the Liu carbon-silyl nitro-ester rearrangement forming Si-O bonds which is not observed in PETN. As the reaction proceeds, the exothermicity of Si-O bond formation promotes the onset of NO2 formation from N-OC bond cleavage which does not occur in PETN. At higher temperatures PETN starts to react by the usual mechanisms of NO2 dissociation and HONO elimination; however, Si-PETN remains far more reactive. These results validate the predictions from QM that the significantly increased sensitivity of Si-PETN arises from a unimolecular process involving the unusual Liu rearrangement but not from multi-molecular collisions. It is the very low energy barrier and the high exothermicity of the Si-O bond formation providing energy early in the decomposition process that is responsible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrate.

Large-scale molecular dynamics simulations and the reactive force field ReaxFF were used to study shock-induced initiation in crystalline pentaerythritol tetranitrate (PETN). In the calculations, a PETN single crystal was impacted against a wall, driving a shockwave back through the crystal in the [100] direction. Two impact speeds (4 and 3 km/s) were used to compare strong and moderate shock b...

متن کامل

Explanation of the colossal detonation sensitivity of silicon pentaerythritol tetranitrate (Si-PETN) explosive.

DFT calculations have identified the novel rearrangement shown here for decomposition of the Si derivative of the PETN explosive [PentaErythritol TetraNitrate (PETN), C(CH(2)ONO(2))(4)] that explains the very dramatic increase in sensitivity observed experimentally. The critical difference is that Si-PETN allows a favorable five-coordinate transition state in which the new Si-O and C-O bonds fo...

متن کامل

ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials.

The practical levels of density functional theory (DFT) for solids (LDA, PBE, PW91, B3LYP) are well-known not to account adequately for the London dispersion (van der Waals attraction) so important in molecular solids, leading to equilibrium volumes for molecular crystals ~10-15% too high. The ReaxFF reactive force field is based on fitting such DFT calculations and suffers from the same proble...

متن کامل

Atomistic simulation of orientation dependence in shock-induced initiation of pentaerythritol tetranitrate.

The dependence of the reaction initiation mechanism of pentaerythritol tetranitrate (PETN) on shock orientation and shock strength is investigated with molecular dynamics simulations using a reactive force field and the multiscale shock technique. In the simulations, a single crystal of PETN is shocked along the [110], [001], and [100] orientations with shock velocities in the range 3-10 km/s. ...

متن کامل

Molecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)

In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 43  شماره 

صفحات  -

تاریخ انتشار 2014